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ABSTRACT

All numerical simulations of stellar convection assume that the unresolved subgrid scales (SGSs) are only
dissipative. We show that the assumption is incorrect and that the SGSs stir (advection), mix (diffusion), and
dissipate. The first two processes were never considered before. We also show that there are two advective
velocities: one contributed by the resolved scales and the other, a bolus velocity, by the unresolved scales.

Subject headings: convection — stars: evolution — stars: interiors

1. THE PROBLEM

Large-eddy simulation (LES) is a technique that attempts to
solve numerically the exact energy and momentum equations.
What fraction of the total number of scales are numerically
resolved? The ratio of the largest L to the smallest l scales and
the number of grid points N to be resolved is given by (the
Sun Re is ≈1012)

3L L3/4 9 9/4 27∼ Re ∼ 10 , N ∼ ∼ Re ∼ 10 ,( )l l
12N ∼ 10 . (1a)max

The maximum Nmax attainable with today’s computers is some
15 orders of magnitude short of what is required to numerically
resolve all the dynamic scales of the problem. Alternatively,
LESs resolve not even 1% of the number of scales given by
the first equation (1a). Thus, the subgrid scales (SGSs) must
contain very large scales and of course medium and small
scales. How have the large and small SGSs been represented?
All LESs have assumed without proof that the SGSs are purely
dissipative (Sofia & Chan 1984; Xie & Toomre 1991; Hossain
& Mullan 1991; Porter & Woodward 1994; Stein & Nordlund
1998; Kim & Chan 1998, hereafter KC). However, a simple
argument shows that the assumption cannot be correct. Dis-
sipation is a small-scale process, while the SGSs still contain
large scales that can also stir (advect) and mix (diffuse). The
often-cited argument that variations of the constants in the
dissipation-only SGS model do not alter the LES results is
inadequate; if a model does not contain some basic physics,
no variation of the constants can resurrect what is not there.
What about mixing? Mixing is a diffusive process that still
cannot fully represent the large unresolved scales. What about
stirring? Stirring, often also called folding and/or streaking, is
an advective process that can occur even in the absence of
mixing and even if the motion is not turbulent. Kneading the
dough is the simplest example. Thus, to properly represent both
large and small SGSs, one needs

stirring (advection), mixing (diffusion), dissipation. (1b)

2. MOMENTUM AND TEMPERATURE MEAN EQUATIONS

We write the exact dynamic equation for the resolved (de-

noted by an overbar) momentum and temperature fields as they
are written in most LES calculations, namely,

D ­
¯ ¯¯ ¯ ¯r u p 2 (pd 1 rt ) 2 rg , (2a)i ij ij iDt ­xj

DT ¯­ui¯¯ ¯ ¯c r p 2p 1 rQ(rad) 1 rQ(vis), (2b)v Dt ­xi

where The SGSs are represented by the¯D/Dt { ­/­t 1 u ­/­x .i i

Reynolds stresses tij ( is the unresolved component of the′ui

velocity field),

21 ′ ′¯t p r Aru u S, (2c)ij i j

and by Q(vis). To obtain Q(vis), we compare equation (2b)
with the exact temperature equation derived in equation (20h)
of Canuto (1997, hereafter C97). The result is

­K ­ ­K
21 c ke¯ ¯ ¯Q(vis) p 2t s 2 u 2 r (F 1 F ) 2 , (2d)ij ij i i i

­x ­x ­ti i

where is the shear generated by the resolved¯ ¯ ¯2s p u 1 uij i, j j, i

scales, K is the kinetic energy , is the convective1 cK p t Fii2

flux, and is the flux of kinetic energy:keF

1c ′ ′ ke ′ ′ ′F p c ru T , F p ru u u . (2e)G H G Hp i i2

Equations (2a)–(2e) are exact. In equation (2d), the first term
represents a local source of thermal energy sincec Tv

2 . The origin of this source is readily identified. Vis-¯t s 1 0ij ij

cous forces cause a loss of kinetic energy, which, by energy
conservation, becomes a source of thermal energy (the gen-
erally used characterization “viscous” in Q(vis) is thus inap-
propriate). The second term represents advection of SGS kinetic
energy gradients by the resolved fields . The second and thirdū
terms represent both diffusion and advection by a “bolus ve-
locity,” as we shall show. The time derivative of K makes the
model dynamical. Thus, the physical arguments leading to
equation (1b) are confirmed by the exact equations.
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3. PREVIOUS SGS MODELS

Thus far, all LESs have assumed that the SGSs are purely
dissipative, which means that

¯Q(vis) p 2t s p e, (3)ij ij

where the last step comes from assuming that , whereP p e
is the production. How is e computed? By¯P p 2t sij ij

definition,

2
r̄e p j u , j p nr(u 1 u ) 2 nrd u , (4a)G Hij i, j ij i, j j, i ij k, k3

where is the viscous stress tensor, is the total′¯j u p u 1 uij i i i

velocity field (resolved and unresolved components), and n is
the kinematic viscosity. One further has

′ ′¯ ¯r̄e p j u p j (u)u 1 j u , (4b)G H G Hij i, j ij i, j ij i, j

and since the large scales have a lifetime much longer than
small scales,

′ ′ ¯ ¯j u k j (u)u , (4c)G Hij i, j ij i, j

one finally has

21 ′ ′¯Q(vis) p e p r j u . (4d)G Hij i, j

There are two models to compute e. In k-space, equation (4d)
becomes

2e p 2n k E(k)dk, (4e)E
and if one knew the turbulent energy spectrum , one couldE(k)
in principle use equation (4e). In stars, the very low value of n
makes the use of equation (4e) very problematic, for one needs
a detailed knowledge of at very high values of k, somethingE(k)
we do not have. Thus, equation (4e) is of little practical use.
Thus, one must solve the dynamic equation for e (C97, eq. [28a]):

De ­ ′ ′ 21 2 21¯1 F (e) p (c rP 2 c g r u )eK 2 c e K , (5a)G Hi s 1 i i 2Dt ­xi

where is the flux of e given byF(e)

­e
F (e) p 2n . (5b)i t

­xi

No astrophysical LES has ever used equations (5a) and (5b).
Rather, they compute e in a peculiar way. They actually “invert”
equation (4c), and instead of equation (4d) they take

21 ¯ ¯¯Q(vis) p e p r j (n p n , u)u , (5c)ij ∗ i, j

where n
*

is some “invented” viscosity. Not only is the process
of turning equation (4c) on its head physically unappealing,
but the final result (eq. [5c]), a Pyrrhic victory for the advantage
of having made the fluctuating fields in equation (4d) disappear
in favor of the known resolved fields in equation (5c), hasū

a high cost, the unknown n
*
, the evaluation of which being

quite a problem.
Hyperviscosity models.—These models entail derivatives

higher than the Laplacian and are merely a numerical device
to help the numerics. Gille & Davis (1999) have shown that
they have a “skill index” Z of only 10% (Z is defined as the
percentage of the mean squared SGS flux produced by a given
model vis-à-vis the one computed with an eddy resolving
model). The hyperviscosity model has the poorest performance
of all SGSs.

Numerical viscosity models.—In some LESs, n
*

is adjusted
to ensure numerical stability, but Marcus (1986) has shown
that this alters the nature of the flow from an inviscid turbulent
flow to a laminar, viscous flow, thus altering the true nature of
the problem.

KC model.— KC adopted equation (5c) but avoided the use
of a numerical n

*
. Instead, they adopt the Smagorinsky-Lilly

model (SLM):

3/422 1/2¯ ¯n p (CD) S, S p (2s s ) , pC p , (6a)∗ ij ij ( )3Ko

2
22 2 2 2 3¯t p 22n s 1 Kd , K p p S D , e p (CD) S . (6b)ij ∗ ij ij3

Here D is the size of the smallest resolved eddy and Ko ∼
is the Kolmogorov constant. The SGS model is thus ex-1.6

pressed in terms of the resolved scales only. Although the KC
model improves the evaluation of n

*
, several shortcomings

must be pointed out:

1. The KC model is only dissipative.
2. Equations (6a) and (6b) are valid for incompressible

flows and underestimate e. In C97 it was shown that in the
compressible case, e has two contributions: a solenoidal, in-
compressible part given by equation (5a) and a dilatatione(s)
compressible part ; . A useful parameteri-e(d) e p e(s) 1 e(d)
zation (C97) is

2 21e p e(s)[1 1 F(M)], M p 2K(gRT ) , (6c)

with , . The result is that compressibility2F(x) p a x a ≈ 11 1

increases dissipation.
3. Kimmel & Domaradzki (2000) have shown that the SLM

fails to predict the shape of the subgrid stresses qualitativelytij

and severely underestimates the largest value. Their conclusion
is that the SLM poorly represents the actual SGS processes.

4. Equation (6b) assumes that the SGS Reynolds stresses
are “aligned” with the large-scale shear , an unlikely as-¯t sij ij

sumption (Canuto 1994) that Kimmel & Domaradzki (2000)
have given further reasons to doubt. In addition, lacks thetij

contribution of buoyancy.

4. CONSISTENCY TEST

Even if one decides to adopt the incomplete dissipation-only
model (eq. [5c]), n

*
must be chosen to satisfy the requirement

(e is given by eqs. [5a], [5b], and [6c])

2
21¯ ¯ ¯ ¯n p e(S u ) , S p (u 1 u ) 2 d u . (7)∗ ij i, j ij i, j j, i ij k, k3
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This is the consistency test that LESs with a dissipation-only
model must satisfy.

5. COMPLETE SGS MODEL

We now provide the relations necessary to compute the full
SGS model (§ 9 in Canuto 1999, hereafter C99): Reynolds
stresses ,tij

1 K 2
¯t p 22n s 1 B 1 Kd , (8a)ij t ij ij ij5 e 3

28 K 2
n p , B p a g J 1 g J 2 d g J . (8b)t ij i j j i ij k k( )75 e 3

Equation (8a) contains the contribution of buoyancy, as re-
quired by the Navier-Stokes equations. Heat flux ;c ¯F p c rJp

21(d 1 m )J p x K t b . (8c)ij ij j t ij j

Here is the superadiabatic temperature gradient and is theb xi t

heat turbulent diffusivity

­T ­T nt21b p 2 1 , x p j n , j p p 0.67. (8d)i t t t t( )­x ­x xi i tad

The tensor is given by [ , , andm a p 0.16 b p 0.215 l pij i

]:21¯2(gr) Pi

21 2 22¯¯m p aKe (s 1 v ) 2 bK e gal b , (8e)ij ij ij i j

where is the vorticity of the resolved scales.¯ ¯ ¯2v p (u 2 u )ij i, j j, i

Equations (8a)–(8c) are a system of linear equations that can
be easily solved. The standard model

2
J p x b , x p x (9)i ∗ i ∗ t3

is a poor approximation of equation (8c); it arbitrarily neglects
mij and for tij takes only the last term in equation (8a). Equa-
tion (8c) then becomes equation (9). We suggest not to use
equation (9) but equations (8c)–(8e).

6. EQUATIONS FOR K AND e

The above SGS model requires two turbulence variables, K
and e. The latter is given by equations (5a) and (6c). For K,
one can use three models of increasing complexity. (1) One
can use Kolmogorov’s model,

2/33Ko eD
K p . (10a)( )2 p

(2) One can use a more complete model in which production

is equal to dissipation (eq. [35c] in C97),

21 ′ ′ ′ ′′ 22¯e p P 2 g r r u , r u p m(g 2 1)rc c J , (10b)i i i p s i

and where (C99, eq. [145b])

¯P p 2t sij ij

2 1 22 21 21¯ ¯p nS 2 K 1 2 e ag J s 2 e gaKJs . (10c)it i i kk i 3( )3 5 5

In equation (10b), cs is the sound speed, m is a polytropic index
(p21 in the Boussinesq approximation), and a is the volume
expansion coefficient (p for a perfect gas). (3) One can21T
solve the full dynamic equation for K given by equation (15b)
of C97.

7. BOLUS VELOCITY

The new SGS model contains an interesting new physical
feature. The third term in equation (2d) seems superficially a
diffusion term, but it also contains an advective part that was
not uncovered thus far for reasons that will soon become clear.
Using the Cayley-Hamilton theorem, equation (8c) can be
solved to give ( ; see the Appendix)21f { x K t bi t ij j

J p (L d 1 L m 1 L m m )f . (11a)i 0 ij 1 ij 2 ik kj j

We now divide mij, equation (8e), into symmetric and antisym-
metric parts:

S am p m 1 m , (11b)ij ij ij

where ( , )21 2 22m { aKe m { 2bK e ga0 1

1s ¯m p m s 1 m (l b 1 l b ), (11c)ij 0 ij 1 i j j i2

1a 21¯m p m (l b 2 l b ) 1 aKe v . (11d)ij 1 i j j i ij2

Inserting equation (11b) into equation (11a), we can write, in
general,

s aJ p (K 1 K )b . (12)i ij ij j

For the present argument we do not need the explicit form of
the tensorial diffusivities , which can be easily constructed.Kij

The relevant point is that we have both symmetric and anti-
symmetric ’s. Let us now return to the SGS form (eq. [2d])Kij

and concentrate on the third term, which, after using equation
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(12), gives rise to

­ ­ s a¯ ¯(rJ ) p r(K 1 K )b . (13a)i ij ij j
­x ­xi i

Next, we rewrite the antisymmetric term as

­ ­a a ∗¯ ¯ ¯rK b p rK b 2 ru b , (13b)ij j ij j j j
­x ­xi i

where is a bolus velocity, defined as∗uj

­∗ a¯ ¯ru p 2 (rK ), (13c)j ij
­xi

which has zero divergence thanks to the antisymmetry of ;aKij

­ ­ ­∗ a¯ ¯ru p 2 rK p 0. (13d)i ij
­x ­x ­xi i j

Moving the bolus velocity to the left-hand side of equa-
tion (2b), we see that there are two advective terms:

­T ¯­T ­ui∗ 21¯ ¯¯c 1 (c u 1 c u ) p 2r p 1 Q(rad) 1 … . (14)i p iv v­t ­x ­xi i

The first is provided by the resolved scales velocity , and theū
second is provided by the bolus velocity , which is due to∗u
the unresolved scales. Since the standard model (eq. [9]) ne-
glects , the antisymmetric is absent and so is the bolusam Kij ij

velocity, this being the reason why was never found before.∗u

8. CONCLUSIONS

In the Letter, we have discussed five topics. First, the as-
sumption that SGSs are only dissipative is not correct since
large scales stir, mix, and dissipate. Second, even if one assumes
a dissipation-only model, present LESs still lack the internal
consistency check (eq. [7]) that must be satisfied. Third, we
have derived an explicit SGS model, equation (2d), that in-
cludes dissipation, mixing, and stirring. Fourth, we have pro-
vided a turbulence model to compute all the ingredients of the
new SGS. Fifth, we have shown that the antisymmetric part of
the heat diffusivity contributes to the advection of the SGS
model. The new SGS model is given by equations (2c), (2d),
(8a)–(8e), (5a), (5b), (6c), and (10a)–(10c). K. L. Chan (2000,
private communication) has found that in the new SGS model
(eq. [2d]), the advective term is about 50% of the first term
(computed with the Smagorinsky model), while the divergence
terms are very large (an order of magnitude larger) near the
convective-radiative border, while they are small inside the
convective zone.

APPENDIX

The explicit form of the L-functions, equation (11a), is as follows (C99, eq. [157]):

DL p 1 1 l 2 l , 2 DL p 1 1 l , DL p 1, D p 1 1 l 2 l 1 l , (A1)0 1 2 1 1 2 1 2 3

2 2 3 3 2l p {m}, 2 2l p l 2 {m }, 6l p l 1 2{m } 2 3l {m }, (A2)1 2 1 3 1 1

2 3{m} p m , {m } p m m , {m } p m m m . (A3)ii ij ji ij jk ki

REFERENCES

Canuto, V. M. 1994, ApJ, 428, 729
———. 1997, ApJ, 482, 827 (C97)
———. 1999, ApJ, 524, 311 (C99)
Gille, S. T., & Davis, R. E. 1999, J. Phys. Oceanogr., 29, 1109
Hossain, M., & Mullan, D. J. 1991, ApJ, 380, 631
Kim, Y. C., & Chan, K. L. 1998, ApJ, 496, L121 (KC)
Kimmel, S. J., & Domaradzki, J. A. 2000, Phys. Fluids, 12, 169

Marcus, P. S. 1986, in Astrophysical Radiation Hydrodynamics, ed. K. H. A.
Winkler & M. L. Norman (Dordrecht: Reidel), 387

Porter, D. H., & Woodward, P. R. 1994, ApJS, 93, 309
Sofia, S., & Chan, K. L. 1984, ApJ, 282, 550
Stein, R. F., & Nordlund, Å. 1998, ApJ, 499, 914
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